Step of Proof: p-fun-exp-compose
11,40
postcript
pdf
Inference at
*
2
1
1
I
of proof for Lemma
p-fun-exp-compose
:
.....equality..... NILNIL
1.
T
: Type
2.
n
:
3. 0 <
n
4.
h
,
f
:(
T
(
T
+ Top)).
f
^
n
- 1 o
h
= primrec(
n
- 1;
h
;
i
,
g
.
f
o
g
)
5.
T
(
T
+ Top)
6.
f
:
T
(
T
+ Top)
primrec(1+(
n
- 1);p-id();
i
,
g
.
f
o
g
) =
f
o primrec(
n
- 1;p-id();
i
,
g
.
f
o
g
)
latex
by GenConcl p-id() =
id
THENA Auto
latex
1
:
1:
7.
id
:
T
(
T
+ Top)
1:
8. p-id() =
id
1:
primrec(1+(
n
- 1);
id
;
i
,
g
.
f
o
g
) =
f
o primrec(
n
- 1;
id
;
i
,
g
.
f
o
g
)
.
Definitions
s
=
t
,
x
:
A
B
(
x
)
,
left
+
right
,
Top
,
p-id()
,
P
Q
,
t
T
,
x
:
A
.
B
(
x
)
Lemmas
p-id
wf
origin